II) Multiplication d'un vecteur par un réel.

1) Caractérisation du vecteur kū.

 $\underline{\text{D\'efinition 4}}$ On appelle produit du vecteur $\vec{\mathbf{u}}$ par le réel k, le vecteur noté k $\vec{\mathbf{u}}$ défini de la façon suivante :

Si $k > 0$ et $\vec{u} \neq \vec{0}$, le vecteur $k\vec{u}$	Si k < 0 et $\vec{u} \neq \vec{0}$, le vecteur k \vec{u}	Si $k = 0$ ou $\vec{u} = \vec{0}$, le vecteur $k\vec{u}$
a même direction que \vec{u}	a même direction que \vec{u}	
		est le vecteur nul : $\vec{0}$
a même sens que \vec{u}	est de sens contraire à \vec{u}	
a pour norme $k \vec{u} $	a pour norme $(-k) \vec{u} $	a pour norme 0
\vec{u}	\vec{u}	
$\frac{1}{k\vec{u}}$	<u>√</u> k <u>u</u> ′	

Propriété 1 Quels que soient les nombres réels h et k et les vecteurs \vec{u} et \vec{v} :

$$\label{eq:hubble} h\vec{u} + k\vec{u} = (h+k)\vec{u}, \qquad h(k\vec{u}) = (hk)\vec{u}, \qquad k(\vec{u}+\vec{v}) = k\vec{u} + k\vec{v}.$$

Exemples

$$.2\overrightarrow{AB} + 5\overrightarrow{AB} = 7\overrightarrow{AB}$$

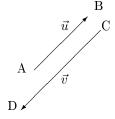
$$.2(\frac{3}{2}\vec{u}) = (2 \times \frac{3}{2})\vec{u} = 3\vec{u}$$

$$.\vec{v} = 3\overrightarrow{AB} + 3\overrightarrow{BC} = 3(\overrightarrow{AB} + \overrightarrow{BC}) = 3\overrightarrow{AC}$$

2) Vecteurs colinéaires.

<u>Définition 5</u> Dire que deux vecteurs non nuls $\vec{\mathbf{u}} = \overrightarrow{AB}$ et $\vec{\mathbf{v}} = \overrightarrow{CD}$ sont colinéaires signifie qu'ils ont même direction.

(Cela signifie que les droites (AB) et (CD) sont parallèles ou confondues.)



Théorème 1 Dire que les vecteurs \vec{u} et \vec{v} sont colinéaires équivaut à dire qu'il existe un nombre réel k non nul tel que $\vec{v} = k\vec{u}$.

Remarque Par convention, on dit que le vecteur nul est colinéaire à tout vecteur \vec{u} .

3) Parallélisme et alignement.

Théorème 2

. Deux droites (AB) et (MN) sont parallèles si, et seulement si les vecteurs \overrightarrow{AB} et \overrightarrow{MN} sont colinéaires.

. Trois points distincts A, B et C sont alignés si, et seulement si les vecteurs \overrightarrow{AB} et \overrightarrow{AC} sont colinéaires.

