Exercice 1 (9 points)

Partie A

k étant un réel donné, on note f_k la fonction définie sur \mathbb{R} par : $f_k(x) = (x + k) e^{-x}$.

On note C_k la courbe représentative de la fonction f_k dans un repère orthonormal $(O; \vec{i}; \vec{j})$.

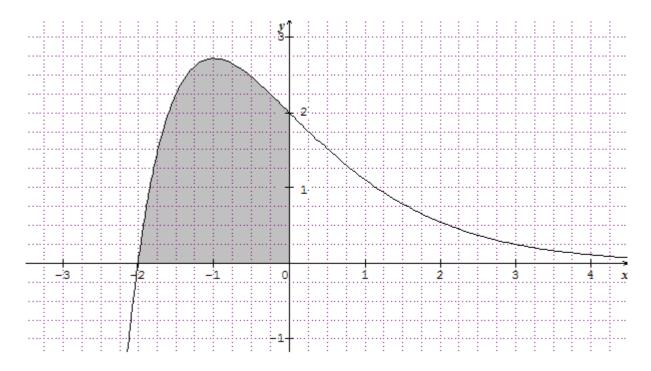
- **1.** Déterminer les limites de f_k en $+ \infty$ et ∞ .
- **2.** Calculer f_k ' (x) pour tout réel x.
- **3.** En déduire le tableau de variation de f_k .

Partie B

1. On considère la suite d'intégrales (I_n) définie par $I_0 = \int_{-2}^{0} e^{-x} dx$ et pour tout entier naturel $n \ge 1$,

par
$$I_n = \int_{-2}^{0} x^n e^{-x} dx$$

- a) Calculer la valeur exacte de I₀.
- **b**) En utilisant une intégration par parties, démontrer l'égalité : $I_{n+1} = (-2)^{n+1} e^2 + (n+1)I_n$.
- c) En déduire les valeurs exactes de I₁ et I₂.
- **2.** Le graphique ci-dessous représente une courbe C_k qui est la représentation graphique d'une fonction f_k définie à la partie A.



- **a)** A l'aide des renseignements donnés par le graphique, déterminer la valeur du nombre réel *k* correspondant.
- **b**) Soit S l'aire de la partie coloriée (en unités d'aire) ; exprimer S en fonction de I_1 et I_0 et en déduire sa valeur exacte.

Exercice 2 (11 points)

On désigne par f la fonction définie sur \mathbb{R} par : $f(x) = \frac{1}{1 + e^{-x}}$

On note C_f la courbe représentative de f dans un repère orthonormal $(O; \vec{i}; \vec{j})$, (unité graphique : 5 cm) **Partie A : étude de la fonction f.**

- **1.** Vérifier que pour tout nombre réel x, $f(x) = \frac{e^x}{1 + e^x}$
- 2. Déterminer les limites de f en $-\infty$ et en $+\infty$. Interpréter graphiquement les résultats obtenus.
- 3. Calculer f'(x) pour tout réel x. En déduire les variations de f sur \mathbb{R} .
- **4.** Dresser le tableau des variations de f.
- **5.** Tracer C_f et ses asymptotes éventuelles dans le repère $(O; \vec{i}; \vec{j})$.

Partie B: quelques propriétés graphiques.

- 1. On considère les points M et M' de la courbe C_f d'abscisses respectives x et -x. Déterminer les coordonnées du milieu A du segment [MM']. Que représente le point A pour la courbe C_f ?
- **2.** Soit *n* un entier naturel. On désigne par D_n le domaine du plan limité par la droite d'équation y = 1, la courbe C_f et les droites d'équations x = 0 et x = n. A_n désigne l'aire du domaine D_n exprimée en cm².
 - a) Calculer A_n .
 - **b**) Etudier la limite éventuelle de A_n lorsque n tend vers $+ \infty$.

Partie C: calcul d'un volume.

Soit λ un réel positif.

On note V(λ) l'intégrale $\int_{-\lambda}^{0} \pi [f(x)]^2 dx$.

On admet que $V(\lambda)$ est une mesure, exprimée en unités de volume, du volume engendré par la rotation autour de l'axe des abscisses, de la portion de la courbe C_f obtenue pour $-\lambda \le x \le 0$.

- 1. Déterminer les nombres réels a et b tels que, pour tout nombre réel x, $\frac{e^{2x}}{(1+e^x)^2} = \frac{ae^x}{1+e^x} + \frac{be^x}{(1+e^x)^2}$
- **2.** Exprimer $V(\lambda)$ en fonction de λ .
- 3. Déterminer la limite de $V(\lambda)$ lorsque λ tend vers $+ \infty$.